Plant Transcription Factor Database
Previous version: v3.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G41315.1
Common NameBHLH1, EN31, GL3, MYC6, MYC6.2, SST
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bHLH
Protein Properties Length: 637aa    MW: 70539.3 Da    PI: 5.929
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G41315.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
          HLH   4 ahnerErrRRdriNsafeeLrellPk.askapskKlsKaeiLekAveYIksLq 55 
                  +h   E++RR+++N++f +Lr+++P+ +      K +K++iL  ++eY+++L+
                  7999**********************77......****************995 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF142158.2E-5314206IPR025610Transcription factor MYC/MYB N-terminal
PROSITE profilePS5088816.552437486IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474591.96E-17440501IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000831.93E-14441491No hitNo description
Gene3DG3DSA:, basic helix-loop-helix (bHLH) domain
PfamPF000102.7E-11441487IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003533.6E-15443492IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0007275Biological Processmulticellular organism development
GO:0009957Biological Processepidermal cell fate specification
GO:0010091Biological Processtrichome branching
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000263anatomynon-hair root epidermal cell
PO:0006504anatomyleaf trichome
PO:0007039developmental stageleaf trichome development stage
Sequence ? help Back to Top
Protein Sequence    Length: 637 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4rqw_A5e-1662065192Transcription factor MYC3
4rqw_B5e-1662065192Transcription factor MYC3
4rs9_A5e-1662065192Transcription factor MYC3
4yz6_A5e-1662065192Transcription factor MYC3
Search in ModeBase
Nucleic Localization Signal ? help Back to Top
No. Start End Sequence
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT5G41315-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Localized in trichome developing region of leaves, prior to trichome initiation. Levels increase in initiating and young trichome cells, but dropped in the pavement cells between trichomes. Disappears in mature trichomes. {ECO:0000269|PubMed:12917293}.
UniprotTISSUE SPECIFICITY: Mostly expressed in roots and flowers. Also present in stems and leaves, and, to a lower extent, in hypocotyls. Expressed in epidermal root hair cells (trichoblasts) and moves to root hairless cells (atrichoblasts) by a cell-to-cell movement through plasmodesmata (at protein level). {ECO:0000269|PubMed:12679534, ECO:0000269|PubMed:14627722, ECO:0000269|PubMed:15590742}.
Functional Description ? help Back to Top
Source Description
TAIRencodes a basic helix loop helix domain protein that interacts with GL1 in trichome development.
UniProtTranscription activator, when associated with MYB75/PAP1, MYB90/PAP2 or TT2. Involved in epidermal cell fate specification. Regulates negatively stomata formation, but, in association with TTG1 and MYB0/GL1, promotes trichome formation, branching and endoreplication. Regulates also trichome cell wall maturation. Together with MYB66/WER, promotes the formation of non-hair cells in root epidermis cells in the N position. Whereas together with CPC, promotes the formation of hair cells in root epidermis cells in the H position by inhibiting non-hair cell formation. Seems also to play a role in the activation of anthocyanin biosynthesis, probably together with MYB75/PAP1. Activates the transcription of GL2. {ECO:0000269|PubMed:11063707, ECO:0000269|PubMed:12917293, ECO:0000269|PubMed:12956536, ECO:0000269|PubMed:14561633, ECO:0000269|PubMed:14627722, ECO:0000269|PubMed:15361138, ECO:0000269|PubMed:15590742}.
Function -- GeneRIF ? help Back to Top
  1. GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis
    [PMID: 15590742]
  2. A novel interaction between mutant alleles of GLABRA3 and SIAMESE, both required for differentiation, is reported.
    [PMID: 17764505]
  3. The role of GL3 in the initiation of trichomes from pluripotent epidermal cells in Arabidopsis is reported.
    [PMID: 17885086]
  4. Data show that GL3 associates with TRANSPARENT TESTA GLABRA1 in vivo, forming a complex.
    [PMID: 18434419]
  5. the role of GL3 in Arabidopsis trichome formation
    [PMID: 18547143]
  6. Expression levels of GL1, MYB23, GL2 and TTG1 were reduced in shoots of sad2 mutants while expression levels of GL3 and ENHANCER OF GLABRA3 (EGL3) were enhanced.
    [PMID: 18713401]
  7. Results suggest that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells.
    [PMID: 18816165]
  8. DNA binding of GL1 and GL3 via their own DNA-binding domains to the promoter of GL2 is probably required for the activation of GL2 expression.
    [PMID: 18948276]
  9. GL3 is a key transcription factor of wound-induced trichome formation acting downstream of jasmonic acid signaling in Arabidopsis
    [PMID: 19234066]
  10. 20 novel genes in the regulatory network involved in the trichome formation are the direct targets of GL3/GL1.
    [PMID: 19247443]
  11. Anthocyanins accumulate in both wild type and egl3, but not in gl3 loss-of-function mutants when depleted of nitrogen.
    [PMID: 19621239]
  12. The analysis of genes preferentially expressed in gl3-sst sim double mutant led to the identification of four additional genes required for normal trichome development.
    [PMID: 19626137]
  13. TTG1 trapping by GL3 is based on direct interaction between both proteins and recruitment in the nucleus.
    [PMID: 22028035]
  14. Nitrogen regulation of anthocyanin biosynthesis in Arabidopsis thaliana red cells undergoes a mechanism by which nitrogen controls the expression of genes encoding both main components of the TTG1-GL3/TT8-PAP1 complex and negative regulators.
    [PMID: 22669605]
  15. GL3::SlGL3 transformation did not show any obvious effect on trichome or non-hair cell differentiation; tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation
    [PMID: 23326563]
  16. GL3 affects the expression of UPL3.
    [PMID: 23373825]
  17. Protein interaction analysis revealed that MYB82 physically interacts with GLABRA3. In addition, MYB82 and GL1 can form homodimers and heterodimers at R2R3-MYB domains, which may explain why their overexpression reduces trichome numbers.
    [PMID: 24803498]
  18. GL1 represses the activation of the TRY promoter by GL3 and TTG1, and TTG1 suppresses the activation of the CPC promoter by GL1 and GL3.
    [PMID: 25926482]
  19. overexpression did not influence anthocyanin biosynthesis in tomato fruit peel
    [PMID: 26039466]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By nitrogen deficiency and UV light. Negatively regulated by MYB66/WER, GL3 and BHLH2 in the developing non-hair cells, and positively regulated by CPC and TRY in the developing hair cells. {ECO:0000269|PubMed:12679534, ECO:0000269|PubMed:15590742, ECO:0000269|PubMed:17053893}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT2G01570 (A), AT2G46410 (A), AT3G58070 (A), AT5G41315 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G01380(A), AT1G79840(A), AT2G37260(A), AT2G46410(A), AT4G01060(A), AT4G09820(A), AT4G22880(R), AT5G08640(R), AT5G13930(R), AT5G41315(R), AT5G53200(A)
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT1G56650GL3 interacts with PAP1.
BINDAT1G63650EGL3 interacts with GL3.
BINDAT1G66390GL3 interacts with PAP2.
BINDAT5G53200GL3 interacts with TRY.
BINDAT5G41315GL3 interacts with another molecule of GL3.
Interaction ? help Back to Top
Source Intact With
BioGRIDAT2G30424, AT5G41315, AT5G52600, AT5G53200, AT1G14920, AT1G01380, AT1G56650, AT1G63650, AT1G66390
IntActSearch Q9FN69
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Plants exhibit two-branched trichomes instead of three-branched trichomes. {ECO:0000269|PubMed:11063707}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G41315
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF2462910.0AF246291.1 Arabidopsis thaliana bHLH-transcription factor mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_680372.10.0transcription factor GLABRA 3
SwissprotQ9FN690.0GL3_ARATH; Transcription factor GLABRA 3
TrEMBLD7MIW90.0D7MIW9_ARALL; Putative uncharacterized protein
STRINGAT5G41315.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP24471429
Publications ? help Back to Top
  1. Luo D,Oppenheimer DG
    Genetic control of trichome branch number in Arabidopsis: the roles of the FURCA loci.
    Development, 1999. 126(24): p. 5547-57
  2. Walker JD,Oppenheimer DG,Concienne J,Larkin JC
    SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes.
    Development, 2000. 127(18): p. 3931-40
  3. Payne CT,Zhang F,Lloyd AM
    GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1.
    Genetics, 2000. 156(3): p. 1349-62
  4. Sawa S
    Overexpression of the AtmybL2 gene represses trichome development in Arabidopsis.
    DNA Res., 2002. 9(2): p. 31-4
  5. Schiefelbein J
    Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot.
    Curr. Opin. Plant Biol., 2003. 6(1): p. 74-8
  6. Heim MA, et al.
    The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity.
    Mol. Biol. Evol., 2003. 20(5): p. 735-47
  7. Toledo-Ortiz G,Huq E,Quail PH
    The Arabidopsis basic/helix-loop-helix transcription factor family.
    Plant Cell, 2003. 15(8): p. 1749-70
  8. Zhang F,Gonzalez A,Zhao M,Payne CT,Lloyd A
    A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis.
    Development, 2003. 130(20): p. 4859-69
  9. Ramsay NA,Walker AR,Mooney M,Gray JC
    Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant.
    Plant Mol. Biol., 2003. 52(3): p. 679-88
  10. Kurata T, et al.
    The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis.
    Plant J., 2003. 36(1): p. 55-66
  11. Esch JJ, et al.
    A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis.
    Development, 2003. 130(24): p. 5885-94
  12. Bernhardt C, et al.
    The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root.
    Development, 2003. 130(26): p. 6431-9
  13. Zimmermann IM,Heim MA,Weisshaar B,Uhrig JF
    Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins.
    Plant J., 2004. 40(1): p. 22-34
  14. Montiel G,Gantet P,Jay-Allemand C,Breton C
    Transcription factor networks. Pathways to the knowledge of root development.
    Plant Physiol., 2004. 136(3): p. 3478-85
  15. Esch JJ,Chen MA,Hillestad M,Marks MD
    Comparison of TRY and the closely related At1g01380 gene in controlling Arabidopsis trichome patterning.
    Plant J., 2004. 40(6): p. 860-9
  16. Bernhardt C,Zhao M,Gonzalez A,Lloyd A,Schiefelbein J
    The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis.
    Development, 2005. 132(2): p. 291-8
  17. Kirik V,Simon M,Wester K,Schiefelbein J,Hulskamp M
    ENHANCER of TRY and CPC 2 (ETC2) reveals redundancy in the region-specific control of trichome development of Arabidopsis.
    Plant Mol. Biol., 2004. 55(3): p. 389-98
  18. Kirik V, et al.
    Functional diversification of MYB23 and GL1 genes in trichome morphogenesis and initiation.
    Development, 2005. 132(7): p. 1477-85
  19. Serna L
    Epidermal cell patterning and differentiation throughout the apical-basal axis of the seedling.
    J. Exp. Bot., 2005. 56(418): p. 1983-9
  20. Dolan L
    Positional information and mobile transcriptional regulators determine cell pattern in the Arabidopsis root epidermis.
    J. Exp. Bot., 2006. 57(1): p. 51-4
  21. Gan Y, et al.
    GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis.
    Plant Cell, 2006. 18(6): p. 1383-95
  22. Baudry A,Caboche M,Lepiniec L
    TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana.
    Plant J., 2006. 46(5): p. 768-79
  23. Kwak SH,Schiefelbein J
    The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis.
    Dev. Biol., 2007. 302(1): p. 118-31
  24. Lea US,Slimestad R,Smedvig P,Lillo C
    Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway.
    Planta, 2007. 225(5): p. 1245-53
  25. Chen ZH,Nimmo GA,Jenkins GI,Nimmo HG
    BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis.
    Biochem. J., 2007. 405(1): p. 191-8
  26. Wang S,Chang Y,Guo J,Chen JG
    Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation.
    Plant J., 2007. 50(5): p. 858-72
  27. Tominaga R,Iwata M,Okada K,Wada T
    Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis.
    Plant Cell, 2007. 19(7): p. 2264-77
  28. Gan Y,Yu H,Peng J,Broun P
    Genetic and molecular regulation by DELLA proteins of trichome development in Arabidopsis.
    Plant Physiol., 2007. 145(3): p. 1031-42
  29. Marks MD,Gilding E,Wenger JP
    Genetic interaction between glabra3-shapeshifter and siamese in Arabidopsis thaliana converts trichome precursors into cells with meristematic activity.
    Plant J., 2007. 52(2): p. 352-61
  30. Cominelli E, et al.
    Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana.
    J. Plant Physiol., 2008. 165(8): p. 886-94
  31. Ishida T, et al.
    Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation.
    Plant Cell, 2007. 19(8): p. 2531-43
  32. Morohashi K, et al.
    Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events.
    Plant Physiol., 2007. 145(3): p. 736-46
  33. Lillo C,Lea US,Ruoff P
    Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway.
    Plant Cell Environ., 2008. 31(5): p. 587-601
  34. Gonzalez A,Zhao M,Leavitt JM,Lloyd AM
    Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.
    Plant J., 2008. 53(5): p. 814-27
  35. Wang Y, et al.
    Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana.
    J. Plant Res., 2008. 121(1): p. 87-96
  36. Basu D,Le J,Zakharova T,Mallery EL,Szymanski DB
    A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(10): p. 4044-9
  37. Marks MD,Esch J,Herman P,Sivakumaran S,Oppenheimer D
    A model for cell-type determination and differentiation in plants.
    Symp. Soc. Exp. Biol., 1991. 45: p. 77-87
  38. Zhao M,Morohashi K,Hatlestad G,Grotewold E,Lloyd A
    The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci.
    Development, 2008. 135(11): p. 1991-9
  39. Dubos C, et al.
    MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana.
    Plant J., 2008. 55(6): p. 940-53
  40. Bouyer D, et al.
    Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation.
    PLoS Biol., 2008. 6(6): p. e141
  41. Kaminuma E,Yoshizumi T,Wada T,Matsui M,Toyoda T
    Quantitative analysis of heterogeneous spatial distribution of Arabidopsis leaf trichomes using micro X-ray computed tomography.
    Plant J., 2008. 56(3): p. 470-82
  42. Wang S, et al.
    Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis.
    BMC Plant Biol., 2008. 8: p. 81
  43. Shangguan XX,Xu B,Yu ZX,Wang LJ,Chen XY
    Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco.
    J. Exp. Bot., 2008. 59(13): p. 3533-42
  44. Gao Y, et al.
    SAD2 in Arabidopsis functions in trichome initiation through mediating GL3 function and regulating GL1, TTG1 and GL2 expression.
    J Integr Plant Biol, 2008. 50(7): p. 906-17
  45. Digiuni S, et al.
    A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves.
    Mol. Syst. Biol., 2008. 4: p. 217
  46. Savage NS, et al.
    A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.
    PLoS Biol., 2008. 6(9): p. e235
  47. Wang S,Chen JG
    Arabidopsis transient expression analysis reveals that activation of GLABRA2 may require concurrent binding of GLABRA1 and GLABRA3 to the promoter of GLABRA2.
    Plant Cell Physiol., 2008. 49(12): p. 1792-804
  48. Ben
    Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial model.
    BMC Syst Biol, 2008. 2: p. 98
  49. Olsen KM, et al.
    Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies.
    Plant Cell Environ., 2009. 32(3): p. 286-99
  50. Yoshida Y,Sano R,Wada T,Takabayashi J,Okada K
    Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis.
    Development, 2009. 136(6): p. 1039-48
  51. Morohashi K,Grotewold E
    A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors.
    PLoS Genet., 2009. 5(2): p. e1000396
  52. Wester K, et al.
    Functional diversity of R3 single-repeat genes in trichome development.
    Development, 2009. 136(9): p. 1487-96
  53. Kang YH, et al.
    The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis.
    Plant Cell, 2009. 21(4): p. 1080-94
  54. Shan X,Zhang Y,Peng W,Wang Z,Xie D
    Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis.
    J. Exp. Bot., 2009. 60(13): p. 3849-60
  55. Tominaga-Wada R, et al.
    The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots.
    Plant J., 2009. 60(3): p. 564-74
  56. Feyissa DN,Løvdal T,Olsen KM,Slimestad R,Lillo C
    The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves.
    Planta, 2009. 230(4): p. 747-54
  57. Marks MD,Wenger JP,Gilding E,Jilk R,Dixon RA
    Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development.
    Mol Plant, 2009. 2(4): p. 803-22
  58. Siegal-Gaskins D,Grotewold E,Smith GD
    The capacity for multistability in small gene regulatory networks.
    BMC Syst Biol, 2009. 3: p. 96
  59. Sako K,Maki Y,Aoyama T,Goto DB,Yamaguchi J
    Control of endoreduplication of trichome by RPT2a, a subunit of the 19S proteasome in Arabidopsis.
    J. Plant Res., 2010. 123(5): p. 701-6
  60. Xia Y, et al.
    The glabra1 mutation affects cuticle formation and plant responses to microbes.
    Plant Physiol., 2010. 154(2): p. 833-46
  61. Jeong SW, et al.
    Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis.
    Plant Physiol., 2010. 154(3): p. 1514-31
  62. Gilding EK,Marks MD
    Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events.
    Plant J., 2010. 64(2): p. 304-17
  63. Niu Y, et al.
    Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).
    Plant Cell Environ., 2011. 34(8): p. 1304-17
  64. Peng Z, et al.
    Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings.
    J Integr Plant Biol, 2011. 53(8): p. 632-40
  65. Qi T, et al.
    The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.
    Plant Cell, 2011. 23(5): p. 1795-814
  66. Zhou Z, et al.
    Zinc finger protein5 is required for the control of trichome initiation by acting upstream of zinc finger protein8 in Arabidopsis.
    Plant Physiol., 2011. 157(2): p. 673-82
  67. Tominaga-Wada R,Iwata M,Nukumizu Y,Wada T
    Analysis of IIId, IIIe and IVa group basic-helix-loop-helix proteins expressed in Arabidopsis root epidermis.
    Plant Sci., 2011. 181(4): p. 471-8
  68. Song SK, et al.
    Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE.
    Plant Physiol., 2011. 157(3): p. 1196-208
  69. Balkunde R,Bouyer D,H
    Nuclear trapping by GL3 controls intercellular transport and redistribution of TTG1 protein in Arabidopsis.
    Development, 2011. 138(22): p. 5039-48
  70. Gan L,Xia K,Chen JG,Wang S
    Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis.
    BMC Plant Biol., 2011. 11: p. 176
  71. Tominaga-Wada R,Iwata M,Nukumizu Y,Sano R,Wada T
    A full-length R-like basic-helix-loop-helix transcription factor is required for anthocyanin upregulation whereas the N-terminal region regulates epidermal hair formation.
    Plant Sci., 2012. 183: p. 115-22
  72. Zhao H, et al.
    A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis.
    J. Biol. Chem., 2012. 287(17): p. 14109-21
  73. Chiu LW,Li L
    Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower.
    Planta, 2012. 236(4): p. 1153-64
  74. Yan A,Pan J,An L,Gan Y,Feng H
    The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana.
    J. Photochem. Photobiol. B, Biol., 2012. 113: p. 29-35
  75. Zhou LL,Shi MZ,Xie DY
    Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana.
    Planta, 2012. 236(3): p. 825-37
  76. Tominaga-Wada R,Nukumizu Y,Sato S,Wada T
    Control of plant trichome and root-hair development by a tomato (Solanum lycopersicum) R3 MYB transcription factor.
    PLoS ONE, 2013. 8(1): p. e54019
  77. Patra B,Pattanaik S,Yuan L
    Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis.
    Plant J., 2013. 74(3): p. 435-47
  78. Zhou Z, et al.
    Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana.
    New Phytol., 2013. 198(3): p. 699-708
  79. Nukumizu Y,Wada T,Tominaga-Wada R
    Tomato (Solanum lycopersicum) homologs of TRIPTYCHON (SlTRY) and GLABRA3 (SlGL3) are involved in anthocyanin accumulation.
    Plant Signal Behav, 2013. 8(7): p. e24575
  80. Qi T,Song S,Xie D
    Modified bimolecular fluorescence complementation assay to study the inhibition of transcription complex formation by JAZ proteins.
    Methods Mol. Biol., 2013. 1011: p. 187-97
  81. Wang G,Zhao GH,Jia YH,Du XM
    Identification and characterization of cotton genes involved in fuzz-fiber development.
    J Integr Plant Biol, 2013. 55(7): p. 619-30
  82. Qi T, et al.
    Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy.
    Plant Cell, 2014. 26(3): p. 1118-33
  83. Liang G,He H,Li Y,Ai Q,Yu D
    MYB82 functions in regulation of trichome development in Arabidopsis.
    J. Exp. Bot., 2014. 65(12): p. 3215-23
  84. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  85. Pesch M, et al.
    TRANSPARENT TESTA GLABRA1 and GLABRA1 Compete for Binding to GLABRA3 in Arabidopsis.
    Plant Physiol., 2015. 168(2): p. 584-97
  86. Wada T,Onishi M,Kunihiro A,Tominaga-Wada R
    Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (Solanum lycopersicum) fruit peel.
    Plant Signal Behav, 2015. 10(5): p. e1000131
  87. Koornneef M,Dellaert LW,van der Veen JH
    EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh.
    Mutat. Res., 1982. 93(1): p. 109-23